Tomas Olsson
Forskare
Tel
E-post
Ort
Västerås
ORCID
Tomas har arbetat som forskare och mjukvaruutvecklare på RISE föregångare SICS sedan 1998. Han har lång erfarenhet av både mjukvaruutveckling och dataanalys. Hans forskningsintressen är tillämpad statistisk maskininlärning.
Examen:
1998 M. Sc. Computer Science, KTH
2006 Ph.Lic. Computer Science, Uppsala University
2015 Ph.D. Computer Science, Mälardalen University
Utvalda publikationer:
Olsson, T., Ramentol, E., Rahman, M., Oostveen, M., & Kyprianidis, K. (2021). A data-driven approach for predicting long-term degradation of a fleet of micro gas turbines. Energy and AI, 100064.
Ramentol, E., Olsson, T., & Barua, S. (2021). Machine Learning Models for Industrial Applications. In AI and Learning Systems-Industrial Applications and Future Directions. IntechOpen.
Källström, E., Olsson, T., Lindström, J., Håkansson, L., & Larsson, J. (2018). On-board Clutch Slippage Detection and Diagnosis in Heavy Duty Machine. International Journal of Prognostics and Health Management, 9(1).
Emruli, B., Olsson, T., & Hoist, A. (2017). PyISC : A Bayesian anomaly detection framework for python. In FLAIRS 2017 - Proceedings of the 30th International Florida Artificial Intelligence Research Society Conference (pp. 514–519).
Nessen, T, Nyfjord, J, Olsson, T, Andrén, D, Larsson, S, Wikström, A, Cedergren, S. (2017). Towards a predictive model for delivering product development projects on time. 24th Innovation and Product Development Management Conference, Reykjavik.
Olsson, T., Xiong, N., Källström, E., Holst, A., & Funk, P. (2015). Fault Diagnosis via Fusion of Information from a Case Stream. In International Conference on Case-Based Reasoning (pp. 275-289). Springer, Cham.
Olsson, T., Gillblad, D., Funk, P., & Xiong, N. (2014). Case-based reasoning for explaining probabilistic machine learning. International Journal of Computer Science and Information Technology, 6(2), 87-101.
Se mer:
https://scholar.google.se/citations?user=1RGAtbEAAAAJ
Fråga mig om
Publikationer
Fråga mig om
Publikationer
- A Data-Driven Approach to Remote Fault Diagnosis of Heavy-duty Machines
- Interpretable ML model for quality control of locks using counterfactual explan…
- Interpretable ML Model for Quality Control of Locks Using Counterfactual Explan…
- Comparison of Machine Learning’s- and Humans’- Ability to Consistently Classify…
- A data-driven approach for predicting long-term degradation of a fleet of micro…
- Machine Learning Models for Industrial Applications
- Towards an Integrated Approach for Micro Gas Turbine Fleet Monitoring, Control …