Contact person
Smart Sealants with Graphene: Monitoring Properties With Eddy-Current Sensors
In this project, funded by SiO grafen/Vinnova- we study real-time status of polymer sealant properties "in-situ" by:
-Making an embedded ring of conductive rubber with graphene/carbon black
-Demonstrating wireless eddy-current sensing of rubber properties
-Calibrate compression force with changes in electrical resistance
Downtime in industry and process are often connected to big expenses, to be able to prevent maintenance will be a big saving. So "-Don´t fix what´s not broken". It+s often not the materials or sealing itself that drives the cost, it´s often the man hours involved and the downtime of equipment. To see a leakage before it causes damages is good, but to see leakage before it appears is a new approach. Materials we are looking at is regular rubber or thermoplastic elastomers (EPDM, NBR,TPE, TPU)
The objective of this project is to develop a sealant that can be monitored in terms of mechanical properties correlating to sealing force, over time ideally without the need for electrodes. This would reduce the unexpected failure of sealants by allowing early detection of which sealants are degrading and minimize waste of resources due to replacement of healthy sealants.
To determine the properties with time using an eddy-current sensor, it is important that the material is conductive, which graphene should lend (100 S/m compared to carbon black 1000 S/m). The technical potential is to demonstrate that this detection method is feasible in sealant materials with a certain amount of conductivity and that a change in mechanical properties with time can be determined by an eddy current sensor.
This project will first involve a literature study. Simultaneously, samples will be made by Trelleborg of ethylene propylene diene monomer (EPDM) rubber with a range of types and amounts of graphene and carbon black. 2D fab AB will supply their powder graphite consisting of graphene flake for this step. The rubber sealant materials will then be aged with compression and heat and measured with the eddy -current sensor during and after aging and correlated to the mechanical properties. Based on the project results, a larger project with a suitable consortium will be formulated and a suitable call identified for continuation of the project.
If you are interested in this , please contact our researchers listed below.
Summary
Project name
Smart Sealants with Graphene
Status
Active
Region
Region Stockholm, Västra Götaland Region
RISE role in project
Project managing and partner
Project start
Duration
9 months
Total budget
300 kSEK
Partner
Trelleborg AB , 2D fab, Westinghouse, Stockholm Vatten och Avfall, Are you interested in participating? Contact us!