Hoppa till huvudinnehåll
Search
Menu
-

Learning machines seminars – genomförda seminarier

Här hittar du tidigare seminarier 2023. Arkiv finns i menyn till höger. Alla seminarier är på engelska.

2024

November

2024-11-28: Alireza Taheri Dehkordi, Lund University
Estimation of water quality parameters using remote sensing data and machine learning models

2024-11-21: Alp Kucukelbir, Columbia University
Artificial Intelligence for Climate Change Mitigation

2024-11-07: Joel Oskarsson, Linköping University
Frontiers in machine learning for weather forecasting

Oktober

2024-10-24: Ankit Kariryaa, University of Copenhagen
Deep Learning for digital twins of individual trees

2024-10-17:  Matthias Obst, University of Gothenburg
Digital Twins & observation systems for monitoring marine biodiversity and change

2024-10-03: Jakob Ambsdorf, University of Copenhagen
Medical image analysis with limited labels

September

2024-09-26: Charlie Fieseler, University of Vienna
How to build a brain

2024-09-19 Mélisande Teng, MILA and Universite de Montreal
Species distribution modeling using remote sensing and citizen science data

2024-09-05: Smita Chakraborty, RISE
AI-SAXS – Decoding Structural Complexity with Intelligent Scattering Analysis

Maj

2024-05-30: Jonas Hentati Sundberg, Swedish University of Agricultural Sciences
Sensors and AI in seabird research and monitoring

2024-05-23: Shruti Nath, University of Oxford and Climate Analytics
Monthly climate model emulators: lightweight tools for agile exploration of future climate uncertainties

2024-05-16: Mikolaj Czerkawski, European Space Agency
Geographical Guidance in the Era of Large-Scale Earth Observation Data and AI

April

2024-04-18: Tobias Andermann, Uppsala University
Spatial biodiversity modeling with remote sensing and AI

2024-04-11: Alouette van Hove, University of Oslo
Guiding drones by information gain

2024-04-04: Karsten Kreis, NVIDIA Toronto AI Lab (16:00)
Visual Generative AI with Diffusion Models – From Static Pixels to Video, 3D and 4D Synthesis

Mars

2024-03-28: Yonghao Xu, Linköping University
Machine learning for remote sensing

2024-03-21: Fredrik Gustafsson, Karolinska Institutet
How reliable is your regression model’s uncertainty under real-world distribution shifts?

2024-03-14: Santiago Martinez Balvanera, University College London
Data-driven bat monitoring: leveraging machine learning for effective solutions

Februari

2024-02-22: Alexander Mathis, EPFL
Measuring behavior and modeling the brain with machine learning

Januari

2024-01-25: Joakim Lindblad, Uppsala University
Trustworthy AI-based decision support in cancer diagnostics

2024-01-18: Serge Belongie, University of Copenhagen
Challenges in Fine-Grained Image Analysis

2023

December

2023-12-07: Stefan Bauer, TU Munich
Neural causal models

November

2023-11-30: Ben Weinstein, University of Florida
General Models for Airborne Wildlife Detection

2023-11-23: Alisa Devlic, Sony AI
Superhuman racing AI through deep reinforcement learning

2023-11-16: Jonas Hellgren, RISE
Reinforcement learning - theory and applications

2023-11-09: Nataša Sladoje, Uppsala University
Automated alignment of multimodal images: To (deep) learn – or not?

2023-11-02: Priya L. Donti, MIT and Climate Change AI
Optimization-in-the-loop ML for energy and climate

Oktober

2023-10-19: Valentin De Bortoli, Google Deepmind
Diffusion Schrödinger Bridge Matching

2023-10-05: Klaus-Robert Müller, TU Berlin
Machine Learning and AI for the Sciences — Towards Understanding

September

2023-09-28: Johan Östman, AI Sweden
The reality of federated learning: from life sciences to finance and beyond

2023-09-21: Nico Lang, University of Copenhagen
Global vegetation monitoring with probabilistic deep learning

2023-09-14: Virginia Smith, CMU
Evaluating Large-Scale Learning Systems

2023-09-07: Adam Breitholtz, Chalmers University of Technology
Unsupervised domain adaptation by learning using privileged information

Augusti

2023-08-31: Zahra Taghiyar Renan, Halmstad University
From domain adaptation to federated learning

Maj

2023-05-25: Puzhao Zhang, KTH
Remote Sensing for Wildfire using Deep Learning

2023-05-11: Jonathan Sauder, École polytechnique fédérale de Lausanne (EPFL)
Unsupervised 3D Mapping from Video

2023-05-04: Ida Arvidsson, Lund University
Applications of AI in Medical Image Analysis

April

2023-04-27: Pontus Stenetorp, University College London (UCL)
LLMs and Future of NLP

2023-04-20: Rico Sennrich, University of Zurich
Knowledge Transfer Across Languages and Modalities

2023-04-13: Elijah Cole, Caltech
Learning from real-world data

Mars

2023-03-23: Gabrielle Flood, Lund University
Motion Maps with Statistical Deformations

2023-03-16: Stefanos Georganos, Karlstad University/KTH
Filling the gaps: AI and Earth Observation

2023-03-09: Shay Cohen, University of Edinburgh
Summarization with Latent Structure, Context Factors and Quantitative Precision

Februari

2023-02-23: Alexander Ilin, Aalto University
Hierarchical Imitation Learning with Vector Quantized Models

2023-02-09: Joakim Nivre, Erik Ylipää, Olof Mogren, RISE
ChatGPT and other large language models 

2023-02-02: Vincent Szolnoky, Chalmers
Model Gradient Similarity

Januari

2023-01-26: Lena Voita, FAIR
Interpretability in NLP

2023-01-19: Giulia Fanti, Carnegie Mellon University
Communication Complexity of Federated Learning

2023-01-12: Mark D. Plumbley, University of Surrey
AI for Sound

Olof Mogren

Kontaktperson

Olof Mogren

Senior Researcher

+46 73 023 56 09

Läs mer om Olof

Kontakta Olof
CAPTCHA

* Obligatoriskt Genom att skicka in formuläret behandlar RISE dina personuppgifter.